Failure Rates of IGCTs
Due to Cosmic Rays
Failure Rates of IGCTs
Due to Cosmic Rays

Application Note 5SYA 2046-01

Nando Kaminski, Thomas Stiasny
ABB Switzerland Ltd, Semiconductors
July 2005

Table of Contents:

1 INTRODUCTION ...3

2 MODELLING THE FAILURE RATES ...3

2.1 VOLTAGE DEPENDENCE ..4

2.2 TEMPERATURE DEPENDENCE ..4

2.3 ALTITUDE DEPENDENCE ...4

3 FAILURE RATES OF THE INDIVIDUAL IGCT TYPES ...4

3.1 CALCULATION EXAMPLES ...4

3.2 GRAPHS FOR 5SHY 35L45XX AND 5SHX 26L4510 ..5

3.3 GRAPHS FOR 5SHX 19L6010 ..6

3.4 GRAPHS FOR 5SHY 30L60XX ...7

4 ADDITIONAL NOTES ..8

4.1 VARYING VOLTAGES ..8

4.2 APPLICATION SUPPORT ..8
1 Introduction

In the early 1990’s a new failure mode for high current, high voltage semiconductor devices was discovered. The failure mode was of considerable practical significance and caused a series of equipment malfunctions in the field.

This failure mode affects all kind of devices like diodes, thyristors, GTOs, IGCTs, IGBTs, etc. It consists of a localised breakdown in the bulk of the devices and is not related to junction termination instabilities. The location of the breakdown spot on the wafer is random. The onset of the breakdown occurs without a precursor within a few nanoseconds and there is no sign of early failures or wear out. The failure rate is, thus, constant in time but strongly dependent on the applied voltage and shows a small dependence on temperature.

Experiments in a German salt mine 140m below ground did not show any of these failures, while experiments on the Jungfraujoch (3480m above sea level) in the Swiss Alps yielded a much higher failure rate than in laboratories close to sea level. Furthermore, irradiation with heavy energetic particles creates the same failure patterns. All together it was concluded that “cosmic rays” are the root cause of this kind of failure and this conclusion is now supported by a huge number of experiments done all around the world.

Primary cosmic rays are high-energy particles, mostly protons, that are found in space and that penetrate our atmosphere. They come from all directions and have a wide energy range of incident particles. Most of these cosmic rays originate from supernovae. Originally the Austrian physicist Viktor Hess (Nobel Prize 1936) discovered cosmic rays because of the ionization they produce in our atmosphere. In fact, a primary cosmic ray particle usually does not reach the surface of the earth directly but collides with an atmospheric particle (see front page). There it generates a variety of other energy-rich particles, which later collide with other atmospheric particles. The process of a cosmic ray particle colliding with atmospheric particles and disintegrating into smaller pions, muons, neutrons, and the like, is called a cosmic-ray shower. Most of the generated particles are harmless for semiconductor devices but some, mostly neutrons, may be lethal.

Occasionally cosmic ray related events are observed, which do not lead to any perceivable damage but in general, the device is doomed even if fast fuses are used.

Today ABB’s high current, high voltage semiconductors are designed such that the failure rate due to cosmic rays is reduced to an “acceptable” level. Nevertheless, cosmic-ray induced failures have to be taken into account for every power electronic circuit. In particular, semiconductors for applications with a high utilisation of the device’s blocking capability and for equipment operating at high altitudes have to be assessed carefully. This application note is intended to provide a basis on which the power electronics designer can estimate failure rates, adjust parameters such as DC-link voltages or simply select the right semiconductor device for a particular application.

2 Modelling the Failure Rates

In order to provide the user with a simple failure rate calculation tool, a mathematical model was developed that covers the three most important influences: blocking voltage, junction temperature, and altitude. The failure rate model consists of three multiplicands:

- the dependence on the DC-voltage (V_{DC} in volts, $V_{DC} > C_1$) at nominal conditions, i.e. 25°C and sea level
- the dependence on the temperature (T_j in degrees Celsius), term equals unity if T_j equals 25°C
- the dependence on the altitude (h in meters above sea level), term equals unity if h equals 0, i.e. sea level.

Altogether the formula reads:

$$
\lambda(V_{DC}, T_j, h) = C_3 \cdot \exp\left(\frac{C_2}{C_1 - V_{DC}}\right) \cdot \exp\left(\frac{25 - T_j}{47.6}\right) \cdot \exp\left(\frac{1 - \frac{h}{44300}^{5.26}}{0.143}\right)
$$

The multiplicands C_3 and \exp equal unity at nominal conditions (25°C and sea level, respectively). Thus, the formula can be simplified for certain cases. If e.g. a converter operates only at sea level multiplicant \exp can be neglected.

This formula is only valid for DC blocking conditions. Varying blocking voltages, blocking duty cycles or over voltage spikes due to switching operations should be addressed as described in paragraph 4.1

NB: • The model delivers failure rates in FIT, i.e. number of failures within 10^9 element hours.
 • The formula is only valid if the DC-link voltage V_{DC} is larger than the parameter C_1 because the formula has a pole at C_1. For V_{DC} values below C_1 the failure rate is regarded as zero.
 • The failure rate model describes only failures that are due to cosmic rays. The model does not cover failures due to other root causes.
2.1 Voltage Dependence
The formula for the voltage dependence (multiplicand A) is a pure fit to measured data at DC-voltage. The formula has no physical background but fits the data almost perfectly. The model's parameters C_1, C_2, and C_3 are, therefore, characteristic values of the individual devices and can be looked up in the table in section 3. The parameters have also no physical meaning.

2.2 Temperature Dependence
The formula for the temperature dependence (multiplicand β) is again a fit to measured data. However, experiments indicate that the failure rates decrease exponentially with temperature and that this dependence is practically independent of the device type. Therefore, the formula does not require any device specific parameters.

2.3 Altitude Dependence
The formula for the altitude dependence (multiplicand E) assumes a screening of cosmic rays by the atmosphere and is, thus, based on the barometric formula. This implies that all devices are affected the same way, so again the formula does not contain any device specific parameters.

3 Failure Rates of the Individual IGCT Types
The following table gives the device-specific parameters for the individual IGCT types. The cosmic ray induced failure rate of the integrated gate unit part is not accounted for, but is assumed to be less dominant for typical applications. The cosmic ray measurements were done with the smallest (corresponding to the D-housing) device type on wafer level. The model parameters were afterwards fitted to the measured failure rates scaled to the device area of the respective larger IGCT. All values are typical values and may vary considerably.

<table>
<thead>
<tr>
<th>Product</th>
<th>C_1 [V]</th>
<th>C_2 [V]</th>
<th>C_3 [FIT]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5SHX 04D4502</td>
<td>2650</td>
<td>5500</td>
<td>2.28E+06</td>
</tr>
<tr>
<td>5SHX 08F4510</td>
<td>2650</td>
<td>5500</td>
<td>4.22E+06</td>
</tr>
<tr>
<td>5SHX 14H4510</td>
<td>2650</td>
<td>5500</td>
<td>7.66E+06</td>
</tr>
<tr>
<td>5SHX 26L4510</td>
<td>2650</td>
<td>5500</td>
<td>1.39E+07</td>
</tr>
<tr>
<td>5SHY 35L45xx</td>
<td>2650</td>
<td>5500</td>
<td>6.88E+06</td>
</tr>
<tr>
<td>5SHX 03D6004</td>
<td>2900</td>
<td>8700</td>
<td>1.27E+07</td>
</tr>
<tr>
<td>5SHX 06F6010</td>
<td>2900</td>
<td>8700</td>
<td>2.31E+07</td>
</tr>
<tr>
<td>5SHX 10H6010</td>
<td>2900</td>
<td>8700</td>
<td>4.21E+07</td>
</tr>
<tr>
<td>5SHX 19L6010</td>
<td>2900</td>
<td>8700</td>
<td>3.66E+07</td>
</tr>
</tbody>
</table>

Section 3.1 gives two examples of how to calculate the failure rate by using the formula and sections 3.2 to 3.4 show some selected graphs for each product listed above together with the underlying measurements.

3.1 Calculation Examples
Assume a 4.5kV IGCT in L-package (5SHY 35L4510) operated at a DC-link voltage of 3400V, a temperature of 0°C and at sea level. Because the altitude is at its nominal value the last multiplicand can be ignored. Together with the parameters from the table above, the failure rate formula now reads:

$$\lambda(3400\text{V},0^{\circ}\text{C,0}m) = 1.39 \cdot 10^7 \text{FIT} \cdot \exp\left(\frac{5500}{2650 - 3400}\right) \cdot \exp\left(\frac{25 - 0}{47.6}\right) = 15400 \text{FIT}$$

15400 FIT means 15400 failures within 10^9 element hours or an MTTF of $1/\lambda = 65000$ h, i.e. 7.4 y. Assuming a converter output stage with six IGCTs, the MTTF reduces to 1.2 y and this is usually not regarded as sufficient reliability. Obviously, the targeted DC-link voltage is too high.

Assume again a 4.5kV IGCT in L-package (5SHY 35L4510) that is operated now at a DC-link voltage of 2800V, a temperature of 25°C and at an altitude of 6000m. Because the temperature is at its nominal condition the multiplicand β can be ignored. Together with the parameters from the table above the failure rate formula now reads:
\[
\lambda(2900V, 25^\circ C, 6000 m) = 1.39 \cdot 10^7 \text{FIT} \cdot \exp\left(\frac{5500}{2650 - 2900}\right) \cdot \exp\left(1 - \frac{6000}{44300}\right)^{5.26} = 0.16 \text{FIT}
\]

In this example the MTTF is 6.1 \cdot 10^9 h or 700000 y. Even if the circuit contains a number of devices the overall reliability will not be affected by cosmic ray induced failures. Nevertheless, due to the statistical nature of the effect there might be cosmic ray failures in the field. Furthermore, the assumption of a constant DC-voltage is not realistic for typical applications. A variation of the DC-voltage due to e.g. input voltage variations or specific operations modes (breaking operation) is to be expected. Even more important is the repetitive over voltage the device has to withstand during switching. Dealing with this area is explained in more detail in section 4.

3.2 Graphs for 5SHY 35L45xx and 5SHX 26L4510

3.3 Graphs for 5SHX 19L6010

Relevant test report: LB PTS 04-043.
3.4 Graphs for 5SHY 30L60xx

Relevant report: TN PTS 05-026.

![Graph 1: Failure rate for 6kV IGCT (L-package) at different temperatures](image1)

![Graph 2: Failure rate for 6kV IGCT (L-package) at different altitudes](image2)
4 Additional notes

4.1 Varying voltages

The model assumes a DC-voltage. However, in most cases the applied voltage is not constant at all due to over voltage spikes during switching or varying DC-voltage during operation. Here a more sophisticated approach is necessary. In fact, the correct value would be obtained by integrating the failure rate over the voltage distribution. Of course, this could be done numerically using the failure rate formula. However, due to the exponential voltage dependence of the failure rate it is usually sufficient to consider only the highest voltages and the voltages to which it is mainly exposed. Assume for example a converter that operates at a DC-link voltage of 2800V. Due to switching over voltages the device is exposed 0.3% of the time to a voltage of 3500V (mainly defined by the clamp design). The converter is equipped with 4.5kV IGCT in L-package (5SHY 35L4510) and operates at 60°C and sea level. If one of the IGCT conducts 50% of the time (during conduction cosmic ray failures are impossible due to the very low voltage) the formula for this device reads:

\[\text{FIT} = 49.7 \times 10^{3} + 0.3 \times 10^{3} = 31 \text{FIT} \]

This means, that the failure rate due to cosmic ray is mainly determined by the switching over voltage.

4.2 Application support

For further information please contact:

Product Management
Eric Carroll
Phone +41 58 586 12 86
Fax +41 58 586 13 06
E-Mail eric.carroll@ch.abb.com

Reliability Engineering
Thomas Stiasny
Phone +41 58 586 14 79
Fax +41 58 586 13 09
E-Mail thomas.stiasny@ch.abb.com

Data sheets of the devices and your nearest sales office can be found at the ABB Switzerland Ltd, Semiconductors internet web site:
http://www.abb.com/semiconductors

ABB Switzerland Ltd, Semiconductors reserves the right to change specifications without notice.